A field indoor air measurement of SARS-CoV-2 in the patient rooms of the largest hospital in Iran

PII: S0048-9697(20)31914-8
DOI: https://doi.org/10.1016/j.scitotenv.2020.138401
Reference: STOTEN 138401

To appear in: Science of the Total Environment

Received date: 31 March 2020
Accepted date: 31 March 2020

Please cite this article as: S. Faridi, S. Niazi, K. Sadeghi, et al., A field indoor air measurement of SARS-CoV-2 in the patient rooms of the largest hospital in Iran, Science of the Total Environment (2020), https://doi.org/10.1016/j.scitotenv.2020.138401

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier.
A field indoor air measurement of SARS-CoV-2 in the patient rooms of the largest hospital in Iran

Sasan Faridi a, b†, Sadegh Niazi c†, Kaveh Sadeghi d†, Kazem Naddafi a, b, Jila Yavarian d, Mansour Shamsipour e, Nazanin Zahra Shafiei Jandaghi d, Khosro Sadeghniai f, Ramin Nabizadeh a, b, Masud Yunesian a, b, Fatemeh Momeniha g, Adel Mokamel b, Mohammad Sadegh Hassanvand a*, Talat MokhtariAzad d*

a Centre for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
b Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
c International Laboratory for Air Quality and Health, School of Earth and Atmospheric Sciences, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
d Department of Virology, School of Public Health, Tehran University of Medical Sciences
e Department of Research Methodology and Data Analysis, Institute for Environmental Research, Tehran University of Medical Sciences
f Occupational Sleep Research Center, Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran
g Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran

† These authors contributed equally to this article.

* Corresponding Authors: Mohammad Sadegh Hassanvand, PhD, Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Phone: +98 21 8897 8395, Fax: +98 21 8897 8398, 8th Floor, No. 1547, North Kargar Avenue, Tehran (Hassanvand@tums.ac.ir), Talat MokhtariAzad, Ph.D, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Phone: +98 21 88950595, Fax: +98 21 88950595, Qods Avenue, Tehran (mokhtari@tums.ac.ir)
Abstract

The coronavirus disease 2019 (COVID-19) emerged in Wuhan city, China, in late 2019 and has rapidly spread throughout the world. The major route of transmission of SARS-CoV-2 is in contention, with the airborne route a likely transmission pathway for carrying the virus within indoor environments. Until now, there has been no evidence for detection of airborne severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and this may have implication for the potential spread of the COVID-19. We investigated the air of patient rooms with confirmed COVID-19 in the largest hospital in Iran, on March 17, 2020. To collect the SARS-CoV-2 particles, ten air samples were collected into the sterile standard midget impingers containing 20 ml DMEM with 100 µg/ml streptomycin, 100 U/ml penicillin and 1% antifoam reagent for 1 hour. Besides, indoor particle number concentrations, CO₂, relative humidity and temperature were recorded throughout the sampling duration. Viral RNA was extracted from samples taken from the impingers and Reverse-Transcription PCR (RT-PCR) was applied to confirm the positivity of collected samples based on the virus genome sequence. Fortunately, in this study all air samples which were collected 2 to 5 m from the patients’ beds with confirmed COVID-19 were negative. Despite we indicated that all air samples were negative, however, we suggest further in vivo experiments should be conducted using actual patient cough, sneeze and breath aerosols in order to show the possibility of generation of the airborne size carrier aerosols and the viability fraction of the embedded virus in those carrier aerosols.

Keywords: SARS-CoV-2; COVID-19; Outbreak; Airborne; Tehran; Iran.
1. Introduction

A novel human coronavirus, named as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), first detected in Wuhan, China, in late 2019 (Holshue et al., 2020; Sohrabi et al., 2020). COVID-19 is spreading rapidly throughout the world; approximately all developed and developing countries and nations (Amirhossein Takian, 2020; Holshue et al., 2020; Sohrabi et al., 2020; van Doremalen et al., 2020a). In Iran, the first official announcement of death due to COVID-19 was reported by the Ministry of Health and Medical Education on February 19, 2020 (Amirhossein Takian, 2020). On March 31, 2020, Iran with 44605 COVID-19 cases and 2898 its deaths was the 7th and 6th highest ranking, among 203 countries and territories throughout the world which have experienced COVID-19 outbreak (https://www.worldometers.info/coronavirus/#countries). Given the rapid spread of COVID-19 globally, investigations are under way to better understand the potential of airborne transmission mode of the virus as well as the clinical characteristics and severity of the disease (Ghinai et al., 2020; Guan et al., 2020; Holshue et al., 2020; Liu et al., 2020; van Doremalen et al., 2020a). Although previously conducted investigations have mainly discussed on the person-to-person transmission of SARS-CoV-2, its transmission airborne mode is controversial (Ghinai et al., 2020; Holshue et al., 2020; van Doremalen et al., 2020a; Wilder-Smith et al., 2020). It was reported that airborne transmission plays an important role in the epidemiology of the two zoonotic coronaviruses that emerged over last two decades, SARS-CoV-1 and MERS-CoV (van Doremalen et al., 2020a). To date, the overall evidence regarding the airborne transmission of SARS-CoV-2 remains incomplete and inconclusive (Ghinai et al., 2020; Ong et al., 2020; van Doremalen et al., 2020b). To better manage the risks of COVID-19, particularly for health-care workers (Cheung et al., 2020), it is extremely crucial to address the importance of airborne
transmission as one of the most important challenge/question of international COVID-19 outbreak. Hereunder we investigated the air samples of patient rooms with severe and critical symptoms to detect the SARS-CoV-2.

2. Materials and Methods

2.1. Study area

We conducted the present study on March 17, 2020 in hospital wards with confirmed COVID-19 at Imam Khomeini Hospital Complex in Tehran, Iran. Tehran, with about 9 million residents and the day time population of near 13 million people who commute into the city from other cities, is the capital and most populous city of Iran (Faridi et al., 2018; Yousefian et al., 2020). On March 31, 2020, Tehran province with the highest confirmed COVID-19 cases ranked the first place among all provinces in Iran. In the city there are 8 and 13 referral and emergency hospitals that admit patients with severe and critical symptoms. We investigated the indoor air of the wards of intensive care unit (ICU)-Thorax, Internal, ICU-General and ICU-Heart surgery to detect SARS-CoV-2 at Imam Khomeini Hospital complex as the largest hospital in Iran.

2.2. Approach to environmental sampling

As a highly efficient approach to sample the airborne viruses, the impinger technique was used in order to collect the air sample of patient rooms with confirmed COVID-19 (Dart and Thornburg, 2008; Verreault et al., 2008). We have developed four specific experimental setups that consists of a vacuum pump with a flow rate equal to 1.5 L.min⁻¹, the standard midget impinger (from SKC. Inc), rechargeable battery and connecting tubes. Prior to each sampling campaign, all experimental setups were autoclaved (impingers) and disinfected (connecting tubes) using alcohol solution 70% based on the protocol of Centers for Disease Control and Prevention (https://www.cdc.gov/coronavirus/2019-ncov/prepare/cleaning-disinfection.html). We installed
our experimental setups in the above-mentioned wards at the height of about 1.5 to 1.8 m from the floor and approximately 2 to 5 m away from the patients’ beds with severe and critical symptoms (Figure 1). Some of the patients coughed during the samples collection. The indoor air of each of wards (ten air samples) was pumped into the sterile impinger containing 20 ml of DMEM (Dulbecco’s Modified Eagle’s Medium) with 100 µg/ml streptomycin, 100 U/ml penicillin and 1% antifoam (isoamyl alcohol) antifoam reagent for 1 hour and the collected samples immediately transferred to a clinical virology laboratory on ice for detection of the novel coronavirus. A real-time instrument at a flow rate of 1.2 L.min⁻¹ (GRIMM Aerosol Spectrometer, model 11E, Grimm Aerosol Technik GmbH, Ainring, Germany) was used to monitor the indoor particle number concentrations (PNC) in thirty-two various size fractions between 0.25 and 32 µm in time intervals of six-second. Additionally, we recorded indoor CO₂ concentration, relative humidity and temperature using AQ110 and HD 110 KIMO (Sauermann Group), respectively.
Figure 1. The location of samples (green) and COVID-19 patients’ beds (red).
2.2. SARS-CoV-2 detection

All samples after sampling were moved to the virology Lab at National Influenza Centre (NIC) under cooler box condition. The samples then were ultra-centrifuged at 110,000 × g for 1.5 h at 4 °C, followed by pellet suspending in the sampling medium. To detect the presence of SARS-CoV-2 in the air samples, specific primer and probe real-time reverse transcriptase–polymerase chain reaction (RT-PCR) targeting RNA-dependent RNA polymerase (RdRp) and Envelop (E) genes was used to determine viral genomes. Viral RNA was extracted from sample material and collected in elution buffer, using a Vazyme Viral RNA/DNA Mini Kit (Vazyme, China) prior to RT-PCR. PCR amplification were performed using The SuperScript™ III One-Step RT-PCR System with Platinum™ Taq DNA Polymerase (Invitrogen, USA). Each reaction contained 12.5 µl master, 0.5 µl of SARS-CoV-2 specific primer and probe sets suggested by WHO (ModularDx Kit, Wuhan Cov RdRP and E gens (Life Science. Berlin, Germany)), 2 µl of nuclease free water. Finally, 5 µl of RNA sample were prepared for real-time PCR (PCR). Prepared reactions were run with initial conditions of 50 °C for 30 min, 95°C for 2 min, followed by 45 cycles of 95 °C for 10 second, and 60 °C for 30 second (Applied Biosystems, USA).

3. Results and discussion

Table 1 reveals the specifications of all collected samples of SARS-CoV-2 in the air of hospital wards, and Table 2 provides additional information on environmental status of patient rooms with confirmed COVID-19. As shown in Table 1, there were forty-four patients confirmed COVID-19 received oxygen mask (n = 22) and intubation (n = 22) treatments. Given the Table 1, all air samples which were taken 2 to 5 m from the patients’ beds were negative. Our results concur with one of the more recent World Health Organization report on March 27, 2020 (https://www.who.int/news-room/commentaries/detail/modes-of-transmission-of-virus-causing-
and a recent published article in the Journal of the American Medical Association (Ong et al., 2020) which indicated SARS-CoV-2 could not be transmitted by an airborne route, suggesting that airborne transmission is not driving the pandemic. However, in a recent preprint article by Joshua L. Santarpia et al (2020) at University of Nebraska Medical Center, the viral RNA was found in air of eleven isolation rooms and in the hallway spaces. An average of 2.86 copies/L of air in room air samples was reported, suggesting the transportation of aerosols, potentially even in the absence of cough or aerosol generating procedures. Since the air samples were collected in the negative pressure equipped rooms, we assume air turbulence, causing by recirculating air in those isolation rooms could remarkably suspend the large droplets for a long period of time, and finally affect the results. Nevertheless, there are some other limitations in that study, e.g. the distance of air samplers from the patient beds was unclear which could limit interpretation for the importance of airborne transmission. It was also mentioned that the air samples in the hallways were taken during sampling activities and samplers were placed on the floor adjacent to rooms. The height of sampling is critically important once it comes to investigate the airborne aerosols. As copies/µl in recovered buffer from the personal air samplers was approximately in the range of that recovered for the floor under beds and from personal items, we presume personnel who wore the samplers likely had close contact with the patients during sampling activities (Santarpia et al., 2020). Neeltje and colleagues (2020) in their recent publication using laboratory nebulized SARS-CoV-2 showed that aerosol transmission of SARS-CoV-2 is plausible, as they found viable virus in aerosols hours post-nebulization by a Collison nebulizer (van Doremalen et al., 2020a; van Doremalen et al., 2020b). The size distribution of generated aerosols by a Collison Nebulizer depends on the type and viscosity of nebulized fluid. Furthermore, multiples size
distributions were reported for Collison nebulizer. For example, it was reported that Collison produces high concentrations of aerosols which are relatively monodisperse with a mass median aerodynamic diameter between 1-2 µm (Swearengen, 2012). It was reported that COVID-19 patients are afflicted with the dry and short cough (Ghinai et al., 2020). Furthermore, the different cough mechanism could produce large carrier droplets compared to collision nebulizer that may not be within the airborne size range. It was accepted that one of the main limitations of laboratory carrier aerosols produced by nebulizers is that fail to adequately represent human aerosols in terms of the physical (size) and chemical characteristics of respiratory droplets (Vejerano and Marr, 2018). These properties could markedly change the final fate of a virus in a respiratory carrier droplet. Moreover, carrier aerosols from a patient’s respiratory system could be spread by coughing, sneezing, speaking and normal breathing, but the profile and possibility of each mode of generation to produce airborne SARS-CoV-2 is unknown. A possible limitation of our study could be that the volume of air collected for each sample (90 L) influenced the ability to detect a PCR peak. As we had limited access to the wards, the number of collected samples might not be generalized to the all wards of hospital with confirmed COVID-19 patients. For the above discussed reasons, we suggest that in future in vivo experiments should be conducted using actual human cough, sneeze and breath aerosols in order to measure; first the possibility of generation of airborne carrier aerosols by each mode of aerosol production and second the number of viable and total viruses of those aerosols. Procedures such as intubation could provide the greatest chance of creating SARS-CoV-2 aerosols. As such health care workers have close contact to the patients, it is imperative that health care workers are protected by stringent levels of personal protective equipment.
Table 1. SARS-CoV-2 in the air samples of hospital wards.

<table>
<thead>
<tr>
<th># of samples</th>
<th>Hospital wards</th>
<th># of COVID-19 patients (status)</th>
<th># of staffs</th>
<th>SARS-CoV-2 in air sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ICU-Thorax</td>
<td>9 (Oxygen mask: 5, Intubated: 4)</td>
<td>15</td>
<td>Negative</td>
</tr>
<tr>
<td>2</td>
<td>Internal</td>
<td>3 (Oxygen mask: 3, Intubated: 0)</td>
<td>2</td>
<td>Negative</td>
</tr>
<tr>
<td>3</td>
<td>ICU-General-Part 1</td>
<td>9 (Oxygen mask: 4, Intubated: 5)</td>
<td>12</td>
<td>Negative</td>
</tr>
<tr>
<td>4</td>
<td>ICU-General-Part 2</td>
<td>9 (Oxygen mask: 5, Intubated: 4)</td>
<td>12</td>
<td>Negative</td>
</tr>
<tr>
<td>5</td>
<td>ICU-Heart surgery- Part 1</td>
<td>8 (Oxygen mask: 3, Intubated: 5)</td>
<td>7</td>
<td>Negative</td>
</tr>
<tr>
<td>6</td>
<td>ICU-Heart surgery- Part 2</td>
<td>4 (Oxygen mask: 2, Intubated: 2)</td>
<td>3</td>
<td>Negative</td>
</tr>
<tr>
<td>7</td>
<td>ICU heart surgery</td>
<td>2 (Oxygen mask: 0, Intubated: 2)</td>
<td>2</td>
<td>Negative</td>
</tr>
</tbody>
</table>

Table 2. Additional information on environmental status of patient rooms with confirmed COVID-19.

<table>
<thead>
<tr>
<th># of samples</th>
<th># of windows (status)</th>
<th>Area of patient rooms (m²)</th>
<th>VS a</th>
<th>T b (°C)</th>
<th>RH c (%)</th>
<th>CO₂ (ppm)</th>
<th>PNC d (min-max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4 (close)</td>
<td>335</td>
<td>Mechanical/Natural</td>
<td>23.1</td>
<td>30.5</td>
<td>404</td>
<td>74388 (56850 – 88150)</td>
</tr>
<tr>
<td>2</td>
<td>1 (close)</td>
<td>20</td>
<td>Natural</td>
<td>23.5</td>
<td>32.3</td>
<td>438</td>
<td>75555 (58200 - 140750)</td>
</tr>
<tr>
<td>3</td>
<td>6 (close)</td>
<td>255</td>
<td>Mechanical/Natural</td>
<td>24.3</td>
<td>26.4</td>
<td>361</td>
<td>167381 (125800 - 279680)</td>
</tr>
<tr>
<td>4</td>
<td>5 (close)</td>
<td>215</td>
<td>Mechanical/Natural</td>
<td>28.4</td>
<td>27.0</td>
<td>362</td>
<td>152135 (95100 - 256770)</td>
</tr>
<tr>
<td>5</td>
<td>4 (close)</td>
<td>180</td>
<td>Mechanical/Natural</td>
<td>24.0</td>
<td>36.5</td>
<td>361</td>
<td>110026 (93650 - 183750)</td>
</tr>
<tr>
<td>6</td>
<td>2 (open)</td>
<td>96</td>
<td>Mechanical/Natural</td>
<td>24.0</td>
<td>28.0</td>
<td>403</td>
<td>107884 (95700 - 126600)</td>
</tr>
<tr>
<td>7</td>
<td>2 (close)</td>
<td>20</td>
<td>Mechanical/Natural</td>
<td>24.5</td>
<td>28.4</td>
<td>503</td>
<td>89814 (70300 - 105300)</td>
</tr>
</tbody>
</table>

a Ventilation system; b Temperature; c Relative humidity; d Particle number concentrations (# of particles/L)

4. Conclusion

The rapid expansion of the COVID-19 is indicative of more efficient person-to-person transmission and likely its pathway airborne. Consequently, we investigated ten air samples of
patient rooms with confirmed COVID-19 in the largest clinical hospital in Iran to address the international challenge regarding the airborne pathway of the SARS-CoV-2 particles. All air samples were negative. As we collected these samples 2 to 5 meter from the patients’ beds, we suggest all health-care staffs of clinical hospital who have close contact to the patients must adhere to national or international evidence based precautions.

Conflict of interests

The authors declared no conflicts of interests.

Acknowledgments

This study was financially supported by the Institute for Environmental Research (IER), Tehran University of Medical Sciences (grant number: 99-1-110-47133). We thank the staff of Imam Khomeini Hospital Complex and Department of Virology, School of Public Health, Tehran University of Medical Sciences.

References

Wilder-Smith A, Chiew CJ, Lee VJ. Can we contain the COVID-19 outbreak with the same measures as for SARS? The Lancet Infectious Diseases 2020.

Author Statement

Conflict of interest

The authors declared no conflicts of interests.
Graphical abstract

SARS-CoV-2 sampling location in the patients’ room with confirmed COVID-19

Nurses’ Station
Highlights

- To address the airborne transmission mode of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) air samples were collected in the largest hospital in Iran with confirmed COVID-19 cases.
- Our results indicated that all collected samples were negative in term of the viral RNA.
- We did not detect any positive readings 2 m from the patients’ beds.